在本文中,我们研究了推断空间变化的高斯马尔可夫随机场(SV-GMRF)的问题,其中的目标是学习代表基因之间网络关系的稀疏,特定于上下文的GMRF网络。 SV-GMRF的一个重要应用是推断来自空间分辨转录组学数据集的基因调节网络。当前有关SV-GMRF推断的工作基于正则最大似然估计(MLE),并且由于其高度非线性的性质而受到压倒性的计算成本。为了减轻这一挑战,我们提出了一个简单有效的优化问题,代替了配备强大的统计和计算保证的MLE。我们提出的优化问题在实践中非常有效:我们可以在不到2分钟的时间内解决具有超过200万变量的SV-GMRF的实例。我们将开发的框架应用于研究胶质母细胞瘤中的基因调节网络如何在组织内部空间重新连接,并确定转录因子Hes4和核糖体蛋白的显着活性是表征肿瘤血管周期壁iche中基因表达网络的特征抗性干细胞。
translated by 谷歌翻译
从数据中学习的定向无环图(DAG)的组合问题最近被构成了纯连续优化问题,它通过基于矩阵指数函数的痕迹利用DAG的可区分无环表征。现有的无环特征基于以下想法:邻接矩阵的功率包含有关步行和周期的信息。在这项工作中,我们提出了一个基于log-determinant(log-det)函数的$ \ textit {根本不同的} $ acyclicity表征,该功能利用了dags的nilpotency属性。为了处理DAG的固有不对称性,我们将日志数据表征的域与$ \ textit {m-matrices} $的集合联系起来,这是与锥体定义的经典日志函数的关键区别积极的矩阵。与先前提出的无环函数相似,我们的表征也是精确且可区分的。但是,与现有特征相比,我们的对数数据函数:(1)更好地检测大周期; (2)行为更好的梯度; (3)它的运行时间在实践中的数量级更快。从优化侧,我们删除了典型的增强拉格朗日方案,并提出了Dagma($ \ textit {ocyclicity} $的M-矩阵{textIt {定向无环形图),这种方法类似于屏障方法的中心路径。 DAGMA的中心路径中的每个点都是通过我们的log-det函数正常的无约束问题的解决方案,然后我们证明在中心路径的极限下,保证解决方案是DAG。最后,我们为$ \ textit {linear} $和$ \ textit {nonlinear} $ sem提供了广泛的实验,并证明我们的方法可以达到针对最先进方法的大加速和较小的结构锤距。
translated by 谷歌翻译
基于概念的黑框模型的解释通常更为直观,让人类理解。基于概念的解释最广泛采用的方法是概念激活向量(CAV)。CAV依靠学习给定模型和概念的某些潜在表示之间的线性关系。线性可分离性通常是隐式假定的,但通常不正确。在这项工作中,我们从基于概念的解释和提出的概念梯度(CG)的最初意图开始,将基于概念的解释扩展到线性概念功能之外。我们表明,对于一般(潜在的非线性)概念,我们可以数学上评估如何影响模型预测的概念的小变化,从而导致基于梯度的解释扩展到概念空间。我们从经验上证明,在玩具示例和现实世界数据集中,CG表现优于CAV。
translated by 谷歌翻译
在硅组织模型中,可以评估磁共振成像的定量模型。这包括对成像生物标志物和组织微结构参数的验证和灵敏度分析。我们提出了一种新的方法来生成心肌微结构的现实数值幻影。我们扩展了以前的研究,该研究考虑了心肌细胞的变异性,心肌细胞(插入式椎间盘)之间的水交换,心肌微结构混乱和四个钣金方向。在该方法的第一阶段,心肌细胞和钣金是通过考虑心肌到骨膜细胞连接的形状变异性和插入式椎间盘而产生的。然后,将薄板汇总和定向在感兴趣的方向上。我们的形态计量学研究表明,数值和真实(文献)心肌细胞数据的体积,长度以及一级和次要轴的分布之间没有显着差异($ p> 0.01 $)。结构相关性分析证实了硅内组织与实际组织的混乱类别相同。此外,心肌细胞的模拟螺旋角(HA)和输入HA(参考值)之间的绝对角度差($ 4.3^\ Circ \ PM 3.1^\ Circ $)与所测量HA之间的绝对角差有很好的一致性使用实验性心脏扩散张量成像(CDTI)和组织学(参考值)(Holmes等,2000)($ 3.7^\ Circ \ PM6.4^\ Circ $)和(Scollan等,1998)($ 4.9) ^\ circ \ pm 14.6^\ circ $)。使用结构张量成像(黄金标准)和实验性CDTI,输入和模拟CDTI的特征向量和模拟CDTI的角度之间的角度距离小于测量角度之间的角度距离。这些结果证实,所提出的方法比以前的研究可以为心肌产生更丰富的数值幻象。
translated by 谷歌翻译
口服食物挑战(OFC)对于准确诊断患者的食物过敏至关重要。但是,患者不愿接受OFC,对于那些这样做的患者,在农村/社区医疗保健环境中,对过敏症患者的使用率有限。通过机器学习方法对OFC结果的预测可以促进在家中食品过敏原的删除,在OFC中改善患者和医师的舒适度,并通过最大程度地减少执行的OFC的数量来节省医疗资源。临床数据是从共同接受1,284个OFC的1,12例患者那里收集的,包括临床因素,包括血清特异性IgE,总IgE,皮肤刺测试(SPTS),症状,性别和年龄。使用这些临床特征,构建了机器学习模型,以预测花生,鸡蛋和牛奶挑战的结果。每种过敏原的最佳性能模型是使用凹入和凸内核(LUCCK)方法创建的,该方法在曲线(AUC)(AUC)下分别用于花生,鸡蛋和牛奶OFC预测为0.76、0.68和0.70, 。通过Shapley添加说明(SHAP)的模型解释表明,特定的IgE以及SPTS的Wheal和Flare值高度预测了OFC结果。该分析的结果表明,机器学习有可能预测OFC结果,并揭示了相关的临床因素进行进一步研究。
translated by 谷歌翻译
标准平面(SP)定位对于常规临床超声(US)诊断至关重要。与2D US相比,3D US可以一次扫描获得多个视图平面,并通过添加冠状平面提供完整的解剖结构。但是,由于方向的可变性和巨大的搜索空间,在3D US中手动导航SPS是费力的和有偏见的。在这项研究中,我们介绍了3D US中自动SP本地化的新型增强学习(RL)框架。我们的贡献是三倍。首先,我们将3D中的SP定位作为RL中的基于切线的问题,以重组动作空间并大大降低搜索空间。其次,我们设计了一种辅助任务学习策略,以增强模型识别跨越平面搜索中非SPS和SP的微妙差异的能力。最后,我们通过同时利用空间和解剖学信息来提出空间 - 动态奖励,以有效地指导学习轨迹。我们探讨了我们方法在子宫和胎儿脑数据集上定位四个SP的功效。实验表明,我们的方法达到了较高的定位精度以及稳健的性能。
translated by 谷歌翻译
复发性喉神经(RLN)的肿瘤浸润是机器人甲状腺切除术的禁忌症,很难通过标准喉镜检测。超声(US)是RLN检测的可行替代方法,因为其安全性和提供实时反馈的能力。但是,直径通常小于3mm的RLN的微小性对RLN的准确定位构成了重大挑战。在这项工作中,我们为RLN本地化提出了一个知识驱动的框架,模仿了外科医生根据其周围器官识别RLN的标准方法。我们基于器官之间固有的相对空间关系构建了先前的解剖模型。通过贝叶斯形状比对(BSA),我们获得了围绕RLN的感兴趣区域(ROI)中心的候选坐标。 ROI允许使用基于多尺度语义信息的双路径识别网络确定RLN的精制质心的视野减少。实验结果表明,与最先进的方法相比,所提出的方法达到了较高的命中率和距离较小的距离误差。
translated by 谷歌翻译
我们证明了(a)具有通用近似功能的广泛的深层变量模型的可识别性,并且(b)是通常在实践中使用的变异自动编码器的解码器。与现有工作不同,我们的分析不需要弱监督,辅助信息或潜在空间中的条件。最近,研究了此类模型的可识别性。在这些作品中,主要的假设是,还可以观察到辅助变量$ u $(也称为侧面信息)。同时,几项作品从经验上观察到,这在实践中似乎并不是必需的。在这项工作中,我们通过证明具有通用近似功能的广泛生成(即无监督的)模型来解释这种行为,无需侧面信息$ u $:我们证明了整个生成模型的可识别性$ u $,仅观察数据$ x $。我们考虑的模型与实践中使用的自动编码器体系结构紧密连接,该体系结构利用了潜在空间中的混合先验和编码器中的Relu/Leaky-Relu激活。我们的主要结果是可识别性层次结构,该层次结构显着概括了先前的工作,并揭示了不同的假设如何导致可识别性的“优势”不同。例如,我们最薄弱的结果确定了(无监督的)可识别性,直到仿射转换已经改善了现有工作。众所周知,这些模型具有通用近似功能,而且它们已被广泛用于实践中来学习数据表示。
translated by 谷歌翻译
在对抗性鲁棒性的背景下,单个模型通常没有足够的力量来防御所有可能的对抗攻击,因此具有亚最佳的鲁棒性。因此,新兴的工作重点是学习神经网络的合奏,以防止对抗性攻击。在这项工作中,我们采取了一种有原则的方法来建立强大的合奏。我们从增强保证金的角度观察了这个问题,并开发了一种学习最大利润的合奏的算法。通过在基准数据集上进行广泛的经验评估,我们表明我们的算法不仅超过了现有的结合技术,而且还以端到端方式训练的大型模型。我们工作的一个重要副产品是边缘最大化的跨肠损失(MCE)损失,这是标准跨侧面(CE)损失的更好替代方法。从经验上讲,我们表明,用MCE损失取代最先进的对抗训练技术中的CE损失会导致显着提高性能。
translated by 谷歌翻译
识别有影响力的培训示例的能力使我们能够调试培训数据并解释模型行为。现有的技术是基于通过模型参数来影响训练数据影响的。对于NLP应用中的大型模型,在所有模型参数中研究此流程通常是不可行的,因此技术通常选择重量的最后一层。但是,我们观察到,由于激活连接到最后一层的权重包含``共享逻辑'',因此通过最后一层权重计算的数据容易``取消效应'',其中不同示例的数据影响不同的示例的数据影响彼此相矛盾的大级级。取消效应降低了影响评分的歧视力,并且根据此措施删除有影响力的例子通常不会太多改变模型的行为。为了减轻这种情况,我们提出了一种称为Tracin的技术,我们可以修改一种称为Tracin的方法,可以在嵌入层而不是最后一层中进行操作,在该层中,取消效果不太严重。一个潜在的问题是,基于单词嵌入层的影响可能无法编码足够的高级信息。但是,我们发现梯度(与嵌入不同)不会遭受这一影响,这可能是因为它们通过较高的层链。我们表明,在三个语言分类任务上,在案例删除评估上,Tracin-We明显优于4-10在上一层上应用的其他数据影响的其他数据影响方法。此外,Tracin-We不仅可以在整体培训输入水平上产生分数,而且还可以在培训输入中的单词水平上产生分数,这是进一步的调试。
translated by 谷歌翻译